A New Method for Traffic Forecasting Based on the Data Mining Technology with Artificial Intelligent Algorithms
نویسنده
چکیده
This study aims to investigate the traffic information forecasting based on the data mining technology. As well known, useful knowledge in traffic management system often hides in a large amount of traffic data. Generally, prior data pattern labels have been used to train the Artificial Neural Network (ANN) to identify the traffic conditions in the traffic information forecasting. The performance of the ANN models suffers from the prior information of the experts. To relieve this impact in the traffic information forecasting, a new ANN model is proposed based on the data mining technology in this study. The Self-Organized Feature Map (SOFM) is firstly employed to cluster the traffic data through an unsupervised learning and provide the labels for these data. Then the labeled data were used to train the GA-Chaos optimized RBF neural network. Herein, the GA-Chaos algorithm is used to train the RBF parameters. Experimental tests use practical data sets from the Intelligent Transportation Systems (ITS) were implemented to validate the performance of the proposed ANN model. The analyses results demonstrate that the proposed method can extract the potential patterns hidden in the traffic data and can accurately predict the future traffic state. The prediction accuracy is beyond 95%. Hence, the new data mining model can provide practical application for traffic information forecasting in the ITS system.
منابع مشابه
Forecasting Of Tehran Stock Exchange Index by Using Data Mining Approach Based on Artificial Intelligence Algorithms
Uncertainty in the capital market means the difference between the expected values and the amounts that actually occur. Designing different analytical and forecasting methods in the capital market is also less likely due to the high amount of this and the need to know future prices with greater certainty or uncertainty. In order to capitalize on the capital market, investors have always sough...
متن کاملTown trip forecasting based on data mining techniques
In this paper, a data mining approach is proposed for duration prediction of the town trips (travel time) in New York City. In this regard, at first, two novel approaches, including a mathematical and a statistical approach, are proposed for grouping categorical variables with a huge number of levels. The proposed approaches work based on the cost matrix generated by repetitive post-hoc tests f...
متن کاملDesign an Intelligent Driver Assistance System Based On Traffic Sign Detection with Persian Context
In recent years due to improvements of technology within automobile industry, design process of advanced driver assistance systems for collision avoidance and traffic management has been investigated in both academics and industrial levels. Detection of traffic signs is an effective method to reach the mentioned aims. In this paper a new intelligent driver assistance system based on traffic...
متن کاملImproved Hybrid Intelligent Method for Urban Road Traffic Flow Forecasting based on Chaos-PSO Optimization
Real time traffic flow is often difficult to predict precisely because of the nonlinear and stochastic characteristics of the traffic flow data. Intelligent prediction methods such as artificial neural network (ANN), support vector machine (SVM), etc. have been proven effective to discover the nonlinear information hidden in the traffic flow data. Nevertheless, their efficiency limits in the lo...
متن کاملDeveloping a Model of Heterogeneity in Driver’s Behavior
Intelligent Driver Model (IDM) is a well-known microscopic model of traffic flow within the traffic engineering societies. While it is a powerful technique for modeling traffic flows, the Intelligent Driver Model lacks the potential of accommodating the notion of drivers’ heterogeneous behavior whenever they are on roads. Concerning the above mentioned, this paper takes the lane to recognize th...
متن کامل